MERLOT Search - category=2782&sort.property=overallRating
http://www.merlot.org:80/merlot/
A search of MERLOT materialsCopyright 1997-2015 MERLOT. All rights reserved.Sun, 25 Jan 2015 13:14:10 PSTSun, 25 Jan 2015 13:14:10 PSTMERLOT Search - category=2782&sort.property=overallRatinghttp://www.merlot.org:80/merlot/images/merlot.gif
http://www.merlot.org:80/merlot/
4434Applets for quantum mechanics
http://www.merlot.org/merlot/viewMaterial.htm?id=74994
This set of applets features illustrations of quantum mechanics through interactive animations in the following domains : Young interference fringes - wavepacket propagation - linear superposition of eigenstates (including coherent states of the harmonic oscillator) - nuclear magnetic resonance.Math And Physics Applets
http://www.merlot.org/merlot/viewMaterial.htm?id=80362
This site provides a large selection of physics and math simulations. There is also fairly comprehensive explanatory information about the science and computation behind the applets. The applets are fairly small, and load quickly (even on dial-up), but are very broad in their coverage of topics. These applets are useful for illustrating physical systems and behavior that can not, in general, observed by experiments.Physlet Problems: Hydrogenic Atom
http://www.merlot.org/merlot/viewMaterial.htm?id=88088
These Physlets give graphical representations of the wavefunctions of the Hydrogen atom. Available are the radial wavefunctions, angular wavefunctions, and a cross-section of the wavefunctions in the z-x plane.These applets are part of the Modern Physics example Physlets from the book of Christian and Belloni. (Chapter 10, examples 10.2.1 and 10.2.2)1-D Quantum Mechanics Applet
http://www.merlot.org/merlot/viewMaterial.htm?id=82715
This quantum mechanics simulation shows the behavior of a single particle bound states in one dimension. It solves the Schrodinger equation and displays the time-dependent wavefunctions for a wide range of potentials.1-D Quantum Transitions Applet
http://www.merlot.org/merlot/viewMaterial.htm?id=82716
This quantum mechanics simulation shows the interaction of classical electromagnetic radiation with a particle bound in one dimension. It demonstrates absorption and stimulated emission from an infinite square well, two coupled wells, and a harmonic oscillator.1D Quantum Crystal Applet
http://www.merlot.org/merlot/viewMaterial.htm?id=84844
This applet shows the results of a Kronig-Penney model of a crystal in 1D. Different periodic potentials are available for study. Results show the quantum states, dispersion relations, and band gaps for the potenial.Graphical representation of complex eigenvectors
http://www.merlot.org/merlot/viewMaterial.htm?id=821153
The Graphical representation of complex eigenvectors simulation aims to help students make connections between graphical and mathematical representations of complex eigenvectors and eigenvalues. The simulation depicts two components of a complex vector in the complex plane, and the same vector under several transformations that can be chosen by the user. A slider allows students to change the second component of the initial vector. The simulation shows whether or not the vector is an eigenvector, and if so displays the associated eigenvalue. The simulation includes a small challenge in asking the student to find the elements of one of the transformation matrices. An accompanying activity for this simulation is available at http://quantumphysics.iop.org and at www.st-andrews.ac.uk/physics/quvis. The simulation can be downloaded from the QuVis website www.st-andrews.ac.uk/physics/quvis.This simulation is part of the UK Institute of Physics New Quantum Curriculum, see http://quantumphysics.iop.org. Simulations and accompanying activities can be accessed from the IOP site and from www.st-andrews.ac.uk/physics/quvis. Sharing of these resources is encouraged, with all usage under the Creative Commons CC BY-NC-ND licence. Instructors can email quantumphysics@iop.org for activity solutions and to request to modify materials.Graphical representation of eigenvectors
http://www.merlot.org/merlot/viewMaterial.htm?id=821150
The Graphical representation of eigenvectors simulation aims to help students make connections between graphical and mathematical representations of eigenvectors and eigenvalues. The simulation depicts the two components of a unit vector in the xy-plane, and the same vector under several different transformations that can be chosen by the user. A slider allows students to change the orientation of the initial vector. The simulation shows whether or not the vector is an eigenvector, and if so displays the associated eigenvalue. The simulation includes a small challenge in asking students to find the elements of one of the transformation matrices 4. An accompanying activity for this simulation is available at http://quantumphysics.iop.org and at www.st-andrews.ac.uk/physics/quvis. The simulation can be downloaded from the QuVis website www.st-andrews.ac.uk/physics/quvis.This simulation is part of the UK Institute of Physics New Quantum Curriculum, see http://quantumphysics.iop.org. Simulations and accompanying activities can be accessed from the IOP site and from www.st-andrews.ac.uk/physics/quvis. Sharing of these resources is encouraged, with all usage under the Creative Commons CC BY-NC-ND licence. Instructors can email quantumphysics@iop.org for activity solutions and to request to modify materials.Physlets and Open Source Physics for Quantum Mechanics: Visualizing Quantum-mechanical Revivals
http://www.merlot.org/merlot/viewMaterial.htm?id=860696
In this paper we describe our five-year effort to create interactive curricular material for upper-level quantum mechanics courses. This material uses both Physlets and newly created Open Source Physics applets and applications to make the teaching of quantum mechanics visual and interactive. These exercises and tools address both quantitative and conceptual difficulties experienced by many students. Because the materials are Web based, they are extremely flexible and are appropriate for use with various pedagogies, such as the Just-in-Time Teaching technique. We briefly outline the features of Physlets and Open Source Physics programs and then describe our suite of Java programs that solve and visualize the problem of a wave packet in an infinite square well. The materials described in this paper can be found on the Open Source Physics Web site and on the MERLOT and ComPADRE digital libraries.University of St Andrews Quantum Mechanics Animations
http://www.merlot.org/merlot/viewMaterial.htm?id=537567
This site contains a collection of animations for the teaching of quantum mechanics concepts (see also Kohnle et al., Eur J Phys, 31 6 (2010) 1441). Each animation includes a step-by-step exploration that explains key points in detail, and most animations include instructor resources consisting of worksheets with full solutions. Animations build on existing education research as well as our lecturing experience, and aim to specifically target student misconceptions and areas of difficulty in quantum mechanics. Animations have been used and evaluated in several quantum mechanics courses. The development of further animations and extension of site functionality are ongoing.