Things to do: Compute the changes in thermodynamic quantities for the different processes, and check your results:
Number  How many moles of ideal gas are in this simulation? (This is, in fact, noted below the applet. Try to figure this out before looking.)
Isobaric  Compute the heat needed to raise the volume by 50 cc for a specific pressure and check your result. (Note: To set the pressure to something easy to work with, go to the isothermal process, grab the piston, and move it up or down until you obtain the pressure you desire. Then go back to the constant pressure process and clear the graph.) Note that the temperature can not be raised above 200 K by adding heat for this process. Next, compute the change in temperature if you increase the volume by 50 cc, by grabbing the piston and moving it.
Isochoric  Compute the heat needed to raise the pressure by 30 kPa at constant volume and check your result. Again, you can set your starting point by moving the piston in an isothermal process and the temperature can not be raised above 200 K by adding heat for this process.
Isothermal  How much do you need to change the volume in order to double the pressure of the gas? How much heat is exchanged in this process? (Note: You can't really check this last question using the applet,
but you should be able to answer it.)
Adiabatic  How much do you need to change the volume in order to double the pressure of the gas? Why is this different from an isothermal process?
More difficult
Engine Design  Comput the endpoints (P, V, and T) of an engine with the following three processes: Isothermal expansion from V_{1} to 3 V_{1} (picking a fairly large initial value of P, around 120 kPa), Constant volume change in pressure, then adiabatic compression back to your original point. You need to compute the final pressure of the second step in order for the cycle to be closed. Use the applet to show that your result is correct.
How does working with a diatomic ideal gas change your answer? Show this.
