An Introduction to Group Theory - Applications to Mathematical Music Theory
Peer Review for material titled "An Introduction to Group Theory - Applications to Mathematical Music Theory"
User Rating for material titled "An Introduction to Group Theory - Applications to Mathematical Music Theory"
Member Comments for material titled "An Introduction to Group Theory - Applications to Mathematical Music Theory"
Bookmark Collections for material titled "An Introduction to Group Theory - Applications to Mathematical Music Theory"
Course ePortfolios for material titled "An Introduction to Group Theory - Applications to Mathematical Music Theory"
Learning Exercises for material titled "An Introduction to Group Theory - Applications to Mathematical Music Theory"
Accessibility Info for material titled "An Introduction to Group Theory - Applications to Mathematical Music Theory"
Please enter a Bookmark title
Please limit Bookmark title to 65 characters
Please enter a description
Please limit Bookmark title to 4000 characters
A Bookmark with this title already existed.
Please limit a note about this material to 2048 characters
Search all MERLOT
Select to go to your profile
Select to go to your workspace
Select to go to your Dashboard Report
Select to go to your Content Builder
Select to log out
Search Terms
Enter username
Enter password
Please give at least one keyword of at least three characters for the search to work with. The more keywords you give, the better the search will work for you.
select OK to launch help window
cancel help

MERLOT II




        

Search > Material Results >

An Introduction to Group Theory - Applications to Mathematical Music Theory

        

An Introduction to Group Theory - Applications to Mathematical Music Theory

Logo for An Introduction to Group Theory - Applications to Mathematical Music Theory
This is a free textbook offered by BookBoon.'The success of Group Theory is impressive and extraordinary. It is, perhaps, the most powerful and influential branch of all Mathematics. Its influence is strongly felt in almost all scientific and artistic disciplines (in Music, in particular) and in Mathematics itself. Group Theory extracts the essential characteristics of diverse situations in which some type of symmetry or transformation appears. Given a non-empty set, a binary operation is... More
Material Type: Open Textbook
Technical Format: HTML/Text
Date Added to MERLOT: February 18, 2014
Date Modified in MERLOT: March 01, 2014
Author:
Submitter: Cathy Swift

Quality

  • Reviewed by members of Editorial board for inclusion in MERLOT.
    Editor Review (not reviewed)
  • User Rating (not rated)
  • Comments (none)
  • Learning Exercises (none)
  • Bookmark Collections (none)
  • Course ePortfolios (none)
  • Accessibility Info (none)

  • Rate this material
  • Create a learning exercise
  • Add accessibility information
  • Pick a Bookmark Collection or Course ePortfolio to put this material in or scroll to the bottom to create a new Bookmark Collection
    Name the Bookmark Collection to represent the materials you will add
    Describe the Bookmark Collection so other MERLOT users will know what it contains and if it has value for their work or teaching. Other users can copy your Bookmark Collection to their own profile and modify it to save time
    Edit the information about the material in this {0}
    Submitting Bookmarks...

About

Primary Audience: College Upper Division, Graduate School
Mobile Compatibility: Not specified at this time
Technical Requirements: <span>Download entire book as PDF from this site</span>
Language: English
Cost Involved: no
Source Code Available: unsure
Accessiblity Information Available: unsure
Creative Commons: unsure

Connections





QR Code for this Page

Users who viewed this material also viewed...

Discussion

Discussion for An Introduction to Group Theory - Applications to Mathematical Music Theory

Log in to participate in the discussions or Register if you are not already a MERLOT member.

Return to Top of Page