Material Detail

"Information Theory and Cell/Nanoparticle Modeling" icon

Information Theory and Cell/Nanoparticle Modeling

Physico-chemical models of cells and nanoparticles are being developed for pure and applied studies. Nanoparticles are simulated by a Poisson-Boltzmann equation (for determining the electric force field in bioelectrolyte media) while an all atom-simulator is used to determine structure. Both modules are optimized for supra-million atom systems. As atomicscale detail is accounted for these modules can determine the influence of cell surface receptors (e.g. binding, destabilization or entry into a membrane) of the nanoparticle. Microarray data is analyzed by integrating cell modeling and databases with information theory. The result is an automated procedure for discovering the structure of the gene regulatory network and quantifying its physical chemistry. Information theory plays a key role in quantifying uncertainty and using it to guide research on transcription factor/gene interactions. The methodology can be generalized for NMR, mass spec and various microarray technologies. Cell models and multiplex data analysis software are being used to understand mechanisms of cancer and discover novel diagnostic and treatment strategies. The nanoparticle simulator is being used to understand the behavior of viruses with potential applications to drug and vaccine discovery.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collection (1) Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.