Material Detail

"Vertically Aligned Carbon Nanotube for Interconnects and Nanoelectrode Based Biosensors" icon

Vertically Aligned Carbon Nanotube for Interconnects and Nanoelectrode Based Biosensors

In the past few years, tremendous progress in the growth of carbon nanotubes (CNTs) has been made, which enabled the fabrication of various CNT devices for applications in electronics, biomedical techniques, and chemical/biological sensors. We have established a process to grow vertically aligned multi-walled CNTs (MWCNTs) using DC-biased plasma enhanced chemical vapor deposition (PECVD). These MWCNTs have been integrated, using a bottom-up approach, for (1) CNT interconnects and (2) nanoelectrode arrays for ultrasensitive DNA detection, both of which rely on MWCNT arrays embedded in SiO2 with detection, both of which rely on MWCNT arrays embedded in SiO2 with only the very end exposed at the surface of SiO2 matrix. By depositing patterned metal contacts at the top surface, the embedded MWCNTs can serve as vertical interconnects in integrated circuits. The processing is fundamentally different from current Cu damascene techniques, which avoids problems associated with etching and filling of high aspect ratio nanoscale holes/trenches. The MWCNTs have demonstrated an extremely high current carrying capability, meeting the long-term requirements by International Semiconductor Technology Roadmap (ISTR). The embedded MWCNT array can be used as a nanoelectrode array for developing electrochemical sensors. The temporal resolution and sensitivity can be dramatically improved. The low-density nanoelectrode array (<1x108 electrode/cm2) has demonstrated an extremely low detection limit down to ~ 1 nM for redox species in the solution. By functionalizing the MWCNT end with oligonucleotide probes, it can be used for detecting the hybridization of specific DNA targets through a mediator amplified guanine oxidation mechanism. The detection of both oligonucleotide targets and PCR amplicons has been demonstrated with a detection limit less than ~1000 molecules. Since the inherent guanine bases in the target DNA are used as signal moieties, this technique is label-free and can be used for rapid molecular analyses.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Browse...

Disciplines with similar materials as Vertically Aligned Carbon Nanotube for Interconnects and Nanoelectrode Based Biosensors

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.