Material Detail

"Bio-nanotechnology:  Implications for more Effective Tissue Engineering Materials" icon

Bio-nanotechnology: Implications for more Effective Tissue Engineering Materials

Nanotechnology can be defined as using materials and systems whose structures and components exhibit novel and significantly changed properties by gaining control of structures at the atomic, molecular, and supramolecular levels. Although many advanced properties for materials with constituent fiber, grain, or particle sizes less than 100 nm have been observed for traditional science and engineering applications (such as in catalytic, optical, mechanical, magnetic, and electrical applications), few advantages for the use of these materials in tissue-engineering applications have been explored. However, nanophase materials may give researchers control over interactions with biological entities (such as proteins and cells) in ways previously unimaginable with conventional materials. This is because organs of the body are nanostructures and, thus, cells in the body are accustomed to interacting with materials that have nanostructured features. Despite this fact, implants currently being investigated as the next-generation of tissue-engineering scaffolds have micron-structured features. In this light, it is not surprising why the optimal tissue-engineering material has not been found to date. Over the past two years, Purdue has provided significant evidence to the research community that nanophase materials can be designed to control interactions with proteins and subsequently mammalian cells for more efficient tissue regeneration. This has been demonstrated for a wide range of nanophase material chemistries including ceramics, polymers, and more recently metals. Such investigations are leading to the design of a number of more successful tissue-engineering materials for orthopedic/dental, vascular, neural, bladder, and cartilage applications. In all applications, compared to conventional materials, the fundamental design parameter necessary to increase tissue regeneration is a surface with a large degree of biologically-inspired nanostructured roughness. In this manner, results from the present collection of studies have added increased tissue-regeneration as another novel property of nanophase materials.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collection (1) Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Browse...

Disciplines with similar materials as Bio-nanotechnology: Implications for more Effective Tissue Engineering Materials

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.