Material Detail

Learning with Perturbations via Gaussian Smoothing

Learning with Perturbations via Gaussian Smoothing

This video was recorded at 27th Annual Conference on Learning Theory (COLT), Barcelona 2014. We present a new optimization-theoretic approach to analyzing Follow-the-Leader style algorithms, particularly in the setting where perturbations are used as a tool for regularization. We show that adding a strongly convex penalty function to the decision rule and adding stochastic perturbations to data correspond to deterministic and stochastic smoothing operations, respectively. We establish an equivalence between "Follow the Regularized Leader" and "Follow the Perturbed Leader" up to the smoothness properties. This intuition leads to a new generic analysis framework that recovers and improves the previous known regret bounds of the class of algorithms commonly known as Follow the Perturbed Leader.


  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material


Log in to participate in the discussions or sign up if you are not already a MERLOT member.