Material Detail

On the design of robust classifiers for computer vision

On the design of robust classifiers for computer vision

This video was recorded at 23rd IEEE Conference on Computer Vision and Pattern Recognition 2010 - San Francisco. The design of robust classifiers, which can contend with the noisy and outlier ridden datasets typical of computer vision, is studied. It is argued that such robustness requires loss functions that penalize both large positive and negative margins. The probability elicitation view of classifier design is adopted, and a set of necessary conditions for the design of such losses is identified. These conditions are used to derive a novel robust Bayes-consistent loss, denoted Tangent loss, and an associated boosting algorithm, denoted TangentBoost. Experiments with data from the computer vision problems of scene classification, object tracking, and multiple instance learning show that... Show More

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.