Material Detail

Flexible and efficient Gaussian process models

Flexible and efficient Gaussian process models

This video was recorded at Gaussian Processes in Practice Workshop, Bletchley Park 2006. I will briefly describe our work on the sparse pseudo-input Gaussian process (SPGP), where we refine the sparse approximation by selecting `pseudo-inputs' using gradient methods. I will then describe several extensions to this framework. Firstly we incorporate supervised dimensionality reduction to deal with high dimensional input spaces. Secondly we develop a version of the SPGP that can handle input-dependent noise. These extensions allow GP methods to be applied to a wider variety of modelling tasks than previously possible.


  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material


Log in to participate in the discussions or sign up if you are not already a MERLOT member.