Material Detail

Regularization and Feature Selection in Least Squares Temporal-Difference Learning

Regularization and Feature Selection in Least Squares Temporal-Difference Learning

This video was recorded at 26th International Conference on Machine Learning (ICML), Montreal 2009. We consider the task of reinforcement learning with linear value function approximation. Temporal difference algorithms, and in particular the Least-Squares Temporal Difference (LSTD) algorithm, provide a method for learning the parameters of the value function, but when the number of features is large this algorithm can over-fit to the data and is computationally expensive. In this paper, we propose a regularization framework for the LSTD algorithm that overcomes these difficulties. In particular, we focus on the case of l1 regularization, which is robust to irrelevant features and also serves as a method for feature selection. Although the l1 regularized LSTD solution cannot be expressed as a convex optimization problem, we present an algorithm similar to the Least Angle Regression (LARS) algorithm that can efficiently compute the optimal solution. Finally, we demonstrate the performance of the algorithm experimentally.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.