Material Detail

Scalable algorithms for learning on graphs

Scalable algorithms for learning on graphs

This video was recorded at 27th International Conference on Machine Learning (ICML), Haifa 2010. Networked data are found in a variety of domains: Web, social networks, biological networks, and many others. In learning tasks, networked data are often represented as a weighted graph whose edge weights reflect the similarity between incident nodes. In this talk, we consider the problem of classifying the nodes of an arbitrary given graph in the game-theoretic mistake bound model. We characterize the optimal predictive performance in terms of the cutsize of the graph's random spanning tree, and describe a randomized prediction algorithm achieving the optimal performance while running in expected time sublinear in the graph size (on most graphs). These results are then extended to the active learning model, where training labels are obtained by querying nodes selected by the algorithm. We describe a fast query placement strategy that, in the special case of trees, achieves the optimal number of mistakes when classifying the non-queried nodes. Joint work with: Claudio Gentile, Fabio Vitale and Giovanni Zappella.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.