Material Detail

Data Mining with Differential Privacy

Data Mining with Differential Privacy

This video was recorded at 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), Washington 2010. We consider the problem of data mining with formal privacy guarantees, given a data access interface based on the differential privacy framework. Differential privacy requires that computations be insensitive to changes in any particular individual's record, thereby restricting data leaks through the results. The privacy preserving interface ensures unconditionally safe access to the data and does not require from the data miner any expertise in privacy. However, as we show in the paper, a naive utilization of the interface to construct privacy preserving data mining algorithms could lead to inferior data mining results. We address this problem by considering the privacy and the algorithmic requirements simultaneously, focusing on decision tree induction as a sample application. The privacy mechanism has a profound effect on the performance of the methods chosen by the data miner. We demonstrate that this choice could make the difference between an accurate classifier and a completely useless one. Moreover, an improved algorithm can achieve the same level of accuracy and privacy as the naive implementation but with an order of magnitude fewer learning samples.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.