Material Detail

Finding Effectors in Social Networks

Finding Effectors in Social Networks

This video was recorded at 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), Washington 2010. Assume a network (V,E) where a subset of the nodes in V are active. We consider the problem of selecting a set of k active nodes that best explain the observed activation state, under a given information-propagation model. We call these nodes effectors. We formally define the k-Effectors problem and study its complexity for different types of graphs. We show that for arbitrary graphs the problem is not only NP-hard to solve optimally, but also NP-hard to approximate. We also show that, for some special cases, the problem can be solved optimally in polynomial time using a dynamic- programming algorithm. To the best of our knowledge, this is the first work to consider the k-Effectors problem in networks. We experimentally evaluate our algorithms using the DBLP co-authorship graph, where we search for effectors of topics that appear in research papers.


  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material


Log in to participate in the discussions or sign up if you are not already a MERLOT member.