Material Detail

Bioengineering at MIT: Building Bridges Between the Sciences, Engineering and Health Care (Part One)

Bioengineering at MIT: Building Bridges Between the Sciences, Engineering and Health Care (Part One)

This video was recorded at MIT World Series: Technology Day 2005. In Doug Lauffenburger's view, MIT's new bioengineering degree program is not merely justified, it is essential. Revolutionary changes in biological sciences—specifically, in molecular biology and genomics—have given scientists the means to understand and control both the building blocks and larger systems of living things. Now, says Lauffenburger, the "operation of biological functions needs to be understood in terms of biomolecular machines." But the hard part, he says, is "predicting what happens when you manipulate them. It's almost trial and error. That's where engineering comes in." Linda Griffith provides one paradigm for such research. She is designing a scaffold on which to grow human cells for use in tissue implants. Using a "computer controlled process that builds complex 3D objects up from scratch," Griffith creates a device that mimics the complex structures of joints and other body parts – suited for joint repair, or bone regeneration. Her research might someday produce organs for transplant. But Griffith's grander goal involves "putting surgeons out of business," by eliminating transplants altogether. She's building a "liver on a chip" – growing liver cells on a tiny wafer with the architecture and molecular properties of actual liver cells. This biomechanical product can be used to test drug toxicity and gene therapies, and perhaps someday to model and block the growth of cancers. Angela Belcher models her bioengineered devices on some of nature's most ingenious products, such as the incredibly strong and exquisitely structured abalone shell. She designs on a nanoscale, getting viruses and antibodies to work with inorganic materials. "How far can you push organisms?" Belcher wonders. To date, she's taught a nontoxic virus to recognize a specific metal used in a semiconductor wafer. Someday viruses could detect atomic defects in electronics. Belcher also describes virus scaffolds for growing semiconductor wires, and for generating lightweight batteries woven into soldier's uniforms. She's even looking into ways of spinning viruses, as spiders spin silk, for generating optical materials.

Quality

  • Editor Reviews
  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.