Material Detail

Reinforcement Learning

Reinforcement Learning

This video was recorded at Machine Learning Summer School (MLSS), Canberra 2005. Reinforcement learning is about learning good control policies given only weak performance feedback: occasional scalar rewards that might be delayed from the events that led to good performance. Reinforcement learning inherently deals with feedback systems rather than (data, class) data samples, providing a more flexible control-like framework than many standard machine algorithms. These lectures will summarise reinforcement learning along 3 axes: # Learning with or without knowledge of the system dynamics. # Using state values as an intermediate solution, or learning a policy directly. # Learning with or without fully observable system states.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.