Material Detail

Discriminative Network Models of Schizophrenia

Discriminative Network Models of Schizophrenia

This video was recorded at 23rd Annual Conference on Neural Information Processing Systems (NIPS), Vancouver 2009. Schizophrenia is a complex psychiatric disorder that has eluded a characterization in terms of local abnormalities of brain activity, and is hypothesized to affect the collective, "emergent'' working of the brain. We propose a novel data-driven approach to capture emergent features using functional brain networks [Eguiluzet al] extracted from fMRI data, and demonstrate its advantage over traditional region-of-interest (ROI) and local, task-specific linear activation analyzes. Our results suggest that schizophrenia is indeed associated with disruption of global, emergent brain properties related to its functioning as a network, which cannot be explained by alteration of local activation patterns. Moreover, further exploitation of interactions by sparse Markov Random Field classifiers shows clear gain over linear methods, such as Gaussian Naive Bayes and SVM, allowing to reach 86% accuracy (over 50% baseline - random guess), which is quite remarkable given that it is based on a single fMRI experiment using a simple auditory task.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.