Material Detail

Making Gradient Descent Optimal for Strongly Convex Stochastic Optimization

Making Gradient Descent Optimal for Strongly Convex Stochastic Optimization

This video was recorded at NIPS Workshops, Sierra Nevada 2011. Stochastic gradient descent (SGD) is a simple and popular method to solve stochastic optimization problems which arise in machine learning. For strongly convex problems, its convergence rate was known to be O(log(T)/T), by running SGD for T iterations and returning the average point. However, recent results showed that using a different algorithm, one can get an optimal O(1/T) rate. This might lead one to believe that standard SGD is suboptimal, and maybe should even be replaced as a method of choice. In this paper, we investigate the optimality of SGD in a stochastic setting. We show that for smooth problems, the algorithm attains the optimal O(1/T) rate. However, for non-smooth problems, the convergence rate with averaging might really be (log(T)/T), and this is not just an artifact of the analysis. On the flip side, we show that a simple modification of the averaging step suffices to recover the O(1/T) rate, and no other change of the algorithm is necessary. We also present experimental results which support our findings, and point out open problems.


  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material


Log in to participate in the discussions or sign up if you are not already a MERLOT member.