Material Detail

Convergence of the graph Laplacian application to dimensionality estimation and image segmentation

Convergence of the graph Laplacian application to dimensionality estimation and image segmentation

This video was recorded at 6th Slovenian International Conference on Graph Theory, Bled 2007. Given a sample from a probability measure with support on a submanifold in Euclidean space one can construct a neighborhood graph which can be seen as an approximation of the submanifold. The graph Laplacian of such a graph is used in several machine learning methods like semi-supervised learning, dimensionality reduction and clustering. We will present the pointwise limit of three different graph Laplacians used in the literature as the sample size increases and the neighborhood size approaches zero. We show that for a uniform measure on the submanifold all graph Laplacians have the same limit up to constants. However in the case of a nonuniform measure on the submanifold only the so called random walk graph Laplacian converges to the weighted Laplace-Beltrami operator. We will give two applications of these theoretical results.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.