
CSE 4310 – Worksheet2

Algorithm Analysis- Time Complexity

Big Oh, Omega, Theta

1. (10 pts) Use the definition of Big O notation to find the constants c, no which show that

T(n) is O(f(n)).

• 𝑇(𝑛) = 3𝑛3 + 4, 𝑓(𝑛) = 5𝑛2

• 𝑇(𝑛) = 2𝑛+1, 𝑓(𝑛) = 2𝑛

2. (20 pts) Suppose you have algorithms with the five running times listed below. (Assume

these are the exact running times.) How much slower do each of these algorithms get

when you (a) double the input size, and (b) increase the input size by one.
For example: consider 𝑇(𝑛) = 𝑛2 , when we double the input size , then

𝑇(𝑛)𝑛𝑒𝑤 = (2𝑛)2 = 4𝑛2 .i.e. the running time is increased by a factor of 4 or

quadruple , and if we increase by one , then 𝑇(𝑛)𝑛𝑒𝑤 = (𝑛 + 1)2 = 𝑛2 + 2n + 1

i.e. the running time increased by a factor of 2𝑛 + 1

• 𝑇(𝑛) = 𝑛3

• 𝑇(𝑛) = 100𝑛2

• 𝑇(𝑛) = 2𝑛

• 𝑇(𝑛) = 𝑙𝑜𝑔2𝑛

3. (10 pts) For each of the following pairs of functions, either f(n) is in O(g(n)), f(n) is
in Ω(g(n)), or f(n) = Θ(g(n)). Determine which relationship is correct and briefly
explain why. Hint : use Lopital’s rule

• 𝑓(𝑛) = 𝑙𝑜𝑔𝑛2; 𝑔(𝑛) = 𝑙𝑜𝑔𝑛 + 5

• 𝑓(𝑛) = 𝑙𝑜𝑔2 𝑛; 𝑔(𝑛) = 𝑙𝑜𝑔𝑛

• 𝑓(𝑛) = 2𝑛; 𝑔(𝑛) = 3𝑛

4. (20 pts) Arrange in increasing order of asymptotic growth. All logs are in base 2

Hint: take the log to base 2 of all functions or compare each of them using

Lopital’s rule

• 𝑇1(𝑛) = 𝑛5/3

• 𝑇2(𝑛) = 2 √𝑙𝑜𝑔 𝑛2

• 𝑇3(𝑛) = √𝑛𝑛2

• 𝑇4(𝑛) = 𝑛5/3

• 𝑇5(𝑛) = 2𝑛

