MERLOT Search - userId=28205
https://www.merlot.org/merlot/
A search of MERLOT materialsCopyright 1997-2016 MERLOT. All rights reserved.Mon, 25 Jul 2016 06:13:07 PDTMon, 25 Jul 2016 06:13:07 PDTMERLOT Search - userId=28205https://www.merlot.org/merlot/images/merlot.gif
https://www.merlot.org/merlot/
4434A Graph-Theoretic Proof of Arrow's Dictator Theorem
https://www.merlot.org/merlot/viewMaterial.htm?id=75818
A simple and short proof of Dictator Theorem is given. Loosely stated, the theorem says that democracies are not possible, with the prevalent voting systems.Thu, 8 Nov 2001 00:00:00 -0800Arrow's Paradox and the Fractional Voting System
https://www.merlot.org/merlot/viewMaterial.htm?id=75812
It is shown that Fractional Voting System can be used to circumvent Arrow's paradox. The paradox states that fair elections are not possible with the present voting systems.Wed, 7 Nov 2001 00:00:00 -0800Foundations of Computer Science
https://www.merlot.org/merlot/viewMaterial.htm?id=89637
NuMachine, as powerful as Turing machine, but more intuitive in its working is described. Adding three more derivation rules to Elementary Arithmetic of Godel and calling it Sentient Arithmetic (SA), the incompleteness theorems are proved within SA, without using any metalanguage. Intuitive Set Theory (IST), a theory in which we do not have to deal with cardinals higher than aleph-null, is described. In IST, there is no Skolem Paradox and there are no nonLebesgue measurable sets.Wed, 13 Jun 2001 00:00:00 -0700White Hole, Black Whole, and The Book
https://www.merlot.org/merlot/viewMaterial.htm?id=89727
Intellectual space is defined as the set of all proofs of mathematical logic, contained in The Book of Erdos. Physical and intellectual spaces are visualized making use of concepts from Intuitive Set Theory.Tue, 26 Jun 2001 00:00:00 -0700A Set Theory for Scientists and Engineers (youtube video)
https://www.merlot.org/merlot/viewMaterial.htm?id=383787
Engineers know that they can land a man on the moon without using the Lebesgue integral and they will never encounter Skolem paradox in their nuclear reactor design. Intuitive Set Theory (IST) defined here, de-emphasizes concepts that are not required by scientists in their practical work.AXIOM OF COMBINATORIAL SETS: A set as important as the powerset of Cantor is what I call the combinatorial set of \aleph_0, which is defined as the set of all subsets of \aleph_0 with cardinality \aleph_0. Axiom of Combinatorial Sets (ACS) says that \aleph_1 is equal to the combinatorial set of \aleph_0. Even though, the combinatorial set is a subset of the powerset, it can be shown that powerset and combinatorial set have the same cardinality.AXIOM OF iNFINITESIMALS: First of all, let us note that corresponding to every real recursive number it is possible to visualize an infinitesimal attached to it. We will illustrate this with an example. Consider the number 2/3 written as an infinite binary sequence 0.101010... and its finite terminations 0.1, 0.101, 0.10101, ... which can be used to represent the intervals (1/2,2/3), (5/8,2/3), (21/32, 2/3), ... respectively. Note that the length of the interval decreases monotonically when the length of the termination increases and the cardinality of the set of points inside these intervals remain constant at 2^\aleph_0. From this, we can say that an infinitesimal is what we get when we visualize the interval corresponding to the entire nonterminating sequence, and this infinitely small interval contains 2^\aleph_0 points in it. The Axiom of Infinitesimals (AI) says that the unit interval is a set, with cardinality \aleph_0, of infinitesimals. We call an infinitesimal an relement and the elements in it figments, claiming that not even the axiom of choice can pick a figment from an relement.INTUITIVE SET THEORY: We define IST as the theory we get when AI and ACS are added to ZF theory. The discerning reader will easily recognize that the notion of a figment will not allow nonLebesgue measurable sets in IST. Also, the fact that \aleph_0 is the cardinality of the set of infinitesimals in a unit interval, provides us with a way to circumvent the Skolem paradox.IN A NUTSHELL: If only relements are allowed in set theory, it is enough for scientists for all practical purposes. If all elements of ZF theory are allowed, then set theorists can live happily in "Cantor's heaven×´.Tue, 19 May 2009 04:30:12 -0700Ackermann Functions and Transfinite Ordinals
https://www.merlot.org/merlot/viewMaterial.htm?id=316548
An important part of Cantor's set theory, which forms the foundations of mathematics, is the concept of transfinite ordinals. A systematic way of writing the sequence of ordinals is given.Sun, 15 Jun 2008 22:51:20 -0700An Axiomatic Definition of Shannon's Entropy
https://www.merlot.org/merlot/viewMaterial.htm?id=75820
A definition of information, which forms the basis of the current information technology, is given in terms of two axioms.Thu, 8 Nov 2001 00:00:00 -0800Arrow's Paradox and the Fractional Voting System: A Snapshot
https://www.merlot.org/merlot/viewMaterial.htm?id=574569
An author's Snapshot for Arrow's Paradox and the Fractional Voting System for the material found in MERLOT at http://www.merlot.org/merlot/viewMaterial.htm?id=75812. This snapshot shows an overview of the material. This was created in the MERLOT Content Builder.Thu, 11 Aug 2011 19:08:03 -0700Definition of Intuitive Set Theory
https://www.merlot.org/merlot/viewMaterial.htm?id=75790
The two axioms which define intuitive set theory, Axiom of Combinatorial Sets and Axiom of Infinitesimals, are stated. Generalized Continuum Hypothesis is derived from the first axiom, and the infinitesimal is visualized using the latter.Sat, 3 Nov 2001 00:00:00 -0800Definition of Intuitive Set Theory: A Snapshot
https://www.merlot.org/merlot/viewMaterial.htm?id=574559
An author's Snapshot for Definition of Intuitive Set Theory material found in MERLOT at http://www.merlot.org/merlot/viewMaterial.htm?id=75790. This snapshot shows an overview of the material. This was created in the MERLOT Content Builder.Thu, 11 Aug 2011 19:07:59 -0700