Select to close Course ePortfolio detail
Select to open Course eportfolio detail
Select to close Course ePortfolio detail
Select to open Course eportfolio prerequisites
Select to close Course ePortfolio prerequisites
Select to open Course eportfolio pedagogical approach and outcomes
Select to close Course ePortfolio pedagogical approach and outcomes
Select to open Course eportfolio assessment methodology and other information
Select to close Course ePortfolio assessment methodology and other information
Are you sure you want to delete this Course ePortfolio Introduction to Linear Algebra
Enter an ISBN to find MERLOT Open Educational Resources (OER) to supplement a textbook
Enter ISBN
Search all MERLOT
Select to go to your profile
Select to go to your workspace
Select to go to your Dashboard Report
Select to go to your Content Builder
Select to log out
Search Terms
Enter username
Enter password
Please give at least one keyword of at least three characters for the search to work with. The more keywords you give, the better the search will work for you.
Select OK to launch help window
Cancel help

MERLOT II

Advanced Search


        

Search > Course ePortfolio Results >

Introduction to Linear Algebra

select to open or close Course ePortfolio detail Course ePortfolio:  Introduction to Linear Algebra

Course ePortfolio Description:

This collection contains the California Open Educational Resources Council (CA OER) list of peer-reviewed textbooks for Linear Algebra (common course-id MATH 250), one of the top 50 college courses identified for inclusion in the Southern University Online Library for Education (SUOLforEd).  

See LA Master Course Matrix  

http://www.regents.la.gov/page/master-course-articulation-matrix

General Course Description - MATH 250:

This course develops the techniques and theory needed to solve and classify systems of linear equations. Solution techniques include row operations, Gaussian elimination, and matrix algebra. Investigates the properties of vectors in two and three dimensions, leading to the notion of an abstract vector space. Vector space and matrix theory are presented including topics such as inner products, norms, orthogonality, eigenvalues, eigenspaces, and linear transformations. Selected applications of linear algebra are included.

Minimum units: 3.0

Any rationale or comment: None

Date Added to MERLOT: August 03, 2016
Created by: SUOL4ed subr
License: Creative Commons License
Derivations of this Course ePortfolio
  Derived From
Select to open Course eportfolio prerequisites

Prerequisites

Select to close Course ePortfolio pedagogical approach and outcomes

select to open or close Course ePortfolio pedagogy and outcomes Pedagogical Approach & Learning Outcomes

Pedagogical Approach:
  • Techniques for solving systems of linear equations including Gaussian and Gauss-Jordan elimination and inverse matrices;
  • Matrix algebra, invertibility, and the transpose;
  • Relationship between coefficient matrix invertibility and solutions to a system of linear equations and the inverse matrices;
  • Special matrices: diagonal, triangular, and symmetric;
  • Determinants and their properties;
  • Vector algebra for Rn;
  • Real vector space and subspaces;
  • Linear independence and dependence;
  • Basis and dimension of a vector space;
  • Matrix-generated spaces: row space, column space, null space, rank, nullity;
  • Change of basis;
  • Linear transformations, kernel and range, and inverse linear transformations;
  • Matrices of general linear transformations;
  • Eigenvalues, eigenvectors, eigenspace;
  • Diagonalization including orthogonal diagonalization of symmetric matrices;
  • Inner products on a real vector space;
  • Dot product, norm of a vector, angle between vectors, orthogonality of two vectors in Rn;
  • Angle and orthogonality in inner product spaces; and
  • Orthogonal and orthonormal bases: Gram-Schmidt process.
Outcomes:

Upon successful completion of the course, students will be able to:

  • Find solutions of systems of equations using various methods appropriate to lower division linear algebra;
  • Use bases and orthonormal bases to solve problems in linear algebra;
  • Find the dimension of spaces such as those associated with matrices and linear transformations;
  • Find eigenvalues and eigenvectors and use them in applications; and
  • Prove basic results in linear algebra using appropriate proof-writing techniques such as linear independence of vectors; properties of subspaces; linearity, injectivity and surjectivity of functions; and properties of eigenvectors and eigenvalues.
Select to open Course eportfolio assessment methodology and other information

Assessment & Other Info

Select to open Course eportfolio resources
Select to close Course ePortfolio resources
Select to close Course ePortfolio resources

select to open or close Course ePortfolio resources Course Resources

Delete the item A First Course in Linear Algebra from this Course ePortfolio
Show the full note for A First Course in Linear Algebra
Close the complete note for A First Course in Linear Algebra
1.
(Open (Access) Textbook)
A First Course in Linear Algebra is an introductory textbook aimed at college-level... More
Delete the item Linear Algebra from this Course ePortfolio
Show the full note for Linear Algebra
Close the complete note for Linear Algebra
2.
(Open (Access) Textbook)
From the author’s description of the book: The approach is developmental. Although the... More
Delete the item Linear Algebra Done Wrong from this Course ePortfolio
Show the full note for Linear Algebra Done Wrong
Close the complete note for Linear Algebra Done Wrong
3.
(Open (Access) Textbook)
Brown University has two introductory linear algebra courses. This text is used in the... More