Material Detail

Designing Efficient Cascaded Classifiers: Tradeoff between Accuracy and Cost

Designing Efficient Cascaded Classifiers: Tradeoff between Accuracy and Cost

This video was recorded at 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), Washington 2010. We propose a method to train a cascade of classifiers by simultaneously optimizing all its stages. The approach relies on the idea of optimizing soft cascades. In particular, instead of optimizing a deterministic hard cascade, we optimize a stochastic soft cascade where each stage accepts or rejects samples according to a probability distribution induced by the previous stage-specific classifier. The overall system accuracy is maximized while explicitly controlling the expected cost for feature acquisition. Experimental results on three clinically relevant problems show the effectiveness of our proposed approach in achieving the desired tradeoff between accuracy and feature acquisition cost.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.