Material Detail

6.047 / 6.878 Computational Biology: Genomes, Networks, Evolution

6.047 / 6.878 Computational Biology: Genomes, Networks, Evolution

This course focuses on the algorithmic and machine learning foundations of computational biology, combining theory with practice. We study the principles of algorithm design for biological datasets, and analyze influential problems and techniques. We use these to analyze real datasets from large-scale studies in genomics and proteomics. The topics covered include: Genomes: biological sequence analysis, hidden Markov models, gene finding, RNA folding, sequence alignment, genome assembly Networks: gene expression analysis, regulatory motifs, graph algorithms, scale-free networks, network motifs, network evolution Evolution: comparative genomics, phylogenetics, genome duplication, genome rearrangements, evolutionary theory, rapid evolution


  • Editor Reviews
  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material


Log in to participate in the discussions or sign up if you are not already a MERLOT member.