Material Detail

Support Vector and Kernel Methods

Support Vector and Kernel Methods

This video was recorded at Advanced Course on AI (ACAI), Ljubljana 2005. The lectures will introduce the kernel methods approach to pattern analysis through the particular example of support vector machines for classification. The presentation touches on: generalization, optimization, dual representation, kernel design and algorithmic implementations. We then broaden the discussion to consider general kernel methods by introducing different kernels, different learning tasks, and subspace methods such as kernel PCA. The aim is to give a view of the subject that will enable a newcomer to the field to gain his bearings so that they can move to apply or develop the techniques for their particular application.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.