Material Detail

Sufficient covariates and linear propensity analysis

Sufficient covariates and linear propensity analysis

This video was recorded at 13th International Conference on Artificial Intelligence and Statistics (AISTATS), Sardinia 2010. Working within the decision-theoretic framework for causal inference, we study the properties of "sufficient covariates", which support causal inference from observational data, and possibilities for their reduction. In particular we illustrate the role of a propensity variable by means of a simple model, and explain why such a reduction typically does not increase (and may reduce) estimation efficiency.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.