Material Detail

Pattern Analysis over Graphs, and Bioinformatics Applications

Pattern Analysis over Graphs, and Bioinformatics Applications

This video was recorded at The Analysis of Patterns, Cagliari 2009. 1. Classification and regression over graphs. Overview: positive definite graph kernels based on walk, subtrees etc.., as well as other non p.d. similarity functions (eg from graph matching) that can be used to compare graphs and do classification/regression with kernel methods. Applications: QSAR in chemistry, image classification 2. Detecting patterns in the context of regression or classification with a graph as prior knowledge over the features. Overview: in a classical regression/classification problem over high-dimensional vectors. Control the complexity, by using priors that can be derived from the graph over the vectors, and how they can be used as penalty functions for classification and regression. This will cover diffusion kernels and other kernels over graphs, fused lasso, structured group lasso. Application in bioinformatics.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Browse...

Disciplines with similar materials as Pattern Analysis over Graphs, and Bioinformatics Applications

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.