Material Detail

An introduction to causal inference in neuroimaging

An introduction to causal inference in neuroimaging

This video was recorded at BBCI Winter School on Neurotechnology, Berlin 2014. A variety of causal inference methods has been introduced to neuroimaging in recent years, including Causal Bayesian Networks, Dynamic Causal Modeling (DCM), Granger Causality, and Linear Non-Gaussian Acyclic Models (LINGAM). While all these methods aim to provide insights into how brain processes interact, they are based on rather different concepts of causality. In this talk, I will review the theoretical foundations of each of these methods, describe their inherent assumptions, and discuss the resulting consequences for the analysis and interpretation of neuroimaging data.

Quality

  • Editor Reviews
  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.