Material Detail

Domain Adaptation for Upper Body Pose Tracking in Signed TV Broadcasts

Domain Adaptation for Upper Body Pose Tracking in Signed TV Broadcasts

This video was recorded at British Machine Vision Conference (BMVC), Bristol 2013. The objective of this work is to estimate upper body pose for signers in TV broadcasts. Given suitable training data, the pose is estimated using a random forest body joint detector. However, obtaining such training data can be costly. The novelty of this paper is a method of transfer learning which is able to harness existing training data and use it for new domains. Our contributions are: (i) a method for adapting existing training data to generate new training data by synthesis for signers with different appearances, and (ii) a method for personalising training data. As a case study we show how the appearance of the arms for different clothing, specifically short and long sleeved clothes, can be modelled to obtain person-specific trackers. We demonstrate that the transfer learning and person specific trackers significantly improve pose estimation performance.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.