Material Detail

Optimal Learners for Multiclass Problems

Optimal Learners for Multiclass Problems

This video was recorded at 27th Annual Conference on Learning Theory (COLT), Barcelona 2014. The fundamental theorem of statistical learning states that for binary classification problems, any Empirical Risk Minimization (ERM) learning rule has close to optimal sample complexity. In this paper we seek for a generic optimal learner for multiclass prediction. We start by proving a surprising result: a generic optimal multiclass learner must be improper, namely, it must have the ability to output hypotheses which do not belong to the hypothesis class, even though it knows that all the labels are generated by some hypothesis from the class. In particular, no ERM learner is optimal. This brings back the fundamental question of "how to learn"? We give a complete answer to this question by giving a new analysis of the one-inclusion multiclass learner of Rubinstein et el (2006) showing that its sample complexity is essentially optimal. Then, we turn to study the popular hypothesis class of generalized linear classifiers. We derive optimal learners that, unlike the one-inclusion algorithm, are computationally efficient. Furthermore, we show that the sample complexity of these learners is better than the sample complexity of the ERM rule, thus settling in negative an open question due to Collins (2005).

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.