Material Detail

Robust Multi-objective Learning with Mentor Feedback

Robust Multi-objective Learning with Mentor Feedback

This video was recorded at 27th Annual Conference on Learning Theory (COLT), Barcelona 2014. We study decision making when each action is described by a set of objectives, all of which are to be maximized. During the training phase, we have access to the actions of an outside agent ("mentor"). In the test phase, our goal is to maximally improve upon the mentor's (unobserved) actions across all objectives. We present an algorithm with a vanishing regret compared with the optimal possible improvement, and show that our regret bound is the best possible. The bound is independent of the number of actions, and scales only as the logarithm of the number of objectives.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.