Material Detail
The Geometry of Losses
This video was recorded at 27th Annual Conference on Learning Theory (COLT), Barcelona 2014. Loss functions are central to machine learning because they are the means by which the quality of a prediction is evaluated. Any loss that is not proper, or can not be transformed to be proper via a link function is inadmissible. All admissible losses for n-class problems can be obtained in terms of a convex body in Rn. We show this explicitly and show how some existing results simplify when viewed from this perspective. This allows the development of a rich algebra of losses induced by binary operations on convex bodies (that return a convex body). Furthermore it allows us to define an "inverse loss" which provides a universal "substitution function" for the Aggregating Algorithm. In doing so we show a formal connection between proper losses and norms.
Quality
- User Rating
- Comments
- Learning Exercises
- Bookmark Collections
- Course ePortfolios
- Accessibility Info