Material Detail
Modeling Mutual Context of Object and Human Pose in Human-Object Interaction Activities
This video was recorded at 23rd IEEE Conference on Computer Vision and Pattern Recognition 2010 - San Francisco. Detecting objects in cluttered scenes and estimating articulated human body parts are two challenging problems in computer vision. The difficulty is particularly pronounced in activities involving human-object interactions (e.g. playing tennis), where the relevant object tends to be small or only partially visible, and the human body parts are often self-occluded. We observe, however, that objects and human poses can serve as mutual context to each other – recognizing one facilitates the recognition of the other. In this paper we propose a new random field model to encode the mutual context of objects and human poses in human-object interaction activities. We then cast the model learning task as a structure learning problem, of which the structural connectivity between the object, the overall human pose, and different body parts are estimated through a structure search approach, and the parameters of the model are estimated by a new max-margin algorithm. On a sports data set of six classes of human-object interactions [12], we show that our mutual context model significantly outperforms state-of-theart in detecting very difficult objects and human poses.
Quality
- User Rating
- Comments
- Learning Exercises
- Bookmark Collections
- Course ePortfolios
- Accessibility Info