Material Detail

What's going on? Discovering Spatio-Temporal Dependencies in Dynamic Scenes

What's going on? Discovering Spatio-Temporal Dependencies in Dynamic Scenes

This video was recorded at 23rd IEEE Conference on Computer Vision and Pattern Recognition 2010 - San Francisco. We present two novel methods to automatically learn spatio-temporal dependencies of moving agents in complex dynamic scenes. They allow to discover temporal rules, such as the right of way between different lanes or typical traffic light sequences. To extract them, sequences of activities need to be learned. While the first method extracts rules based on a learned topic model, the second model called DDP-HMM jointly learns co-occurring activities and their time dependencies. To this end we employ Dependent Dirichlet Processes to learn an arbitrary number of infinite Hidden Markov Models. In contrast to previous work, we build on state-of-the-art topic models that allow to... Show More
Rate

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.