Material Detail
Kernel Polytope Faces Pursuit
This video was recorded at European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), Bled 2009. Polytope Faces Pursuit (PFP) is a greedy algorithm that approximates the sparse solutions recovered by 1 regularised least-squares (Lasso) [4, 10] in a similar vein to (Orthogonal) Matching Pursuit (OMP) [16]. The algorithm is based on the geometry of the polar polytope where at each step a basis function is chosen by finding the maximal vertex using a path-following method. The algorithmic complexity is of a similar order to OMP whilst being able to solve problems known to be hard for (O)MP. Matching Pursuit was extended to build kernel-based solutions to machine learning problems, resulting in the sparse regression algorithm, Kernel Matching Pursuit (KMP) [17]. We develop a new algorithm to build sparse kernel-based solutions using PFP, which we call Kernel Polytope Faces Pursuit (KPFP). We show the usefulness of this algorithm by providing a generalisation error bound [7] that takes into account a natural regression loss and experimental results on several benchmark datasets.
Quality
- User Rating
- Comments
- Learning Exercises
- Bookmark Collections
- Course ePortfolios
- Accessibility Info