Material Detail
PLSI: The True Fisher Kernel and Beyond
This video was recorded at European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), Bled 2009. The Probabilistic Latent Semantic Indexing model, introduced by T. Hofmann (1999), has engendered applications in numerous fields, notably document classification and information retrieval. In this context, the Fisher kernel was found to be an appropriate document similarity measure. However, the kernels published so far contain unjustified features, some of which hinder their performances. Furthermore, PLSI is not generative for unknown documents, a shortcoming usually remedied by "folding them in" the PLSI parameter space. This paper contributes on both points by (1) introducing a new, rigorous development of the Fisher kernel for PLSI, addressing the role of the Fisher Information Matrix, and uncovering its relation to the kernels proposed so far; and (2) proposing a novel and theoretically sound document similarity, which avoids the problem of "folding in" unknown documents. For both aspects, experimental results are provided on several information retrieval evaluation sets.
Quality
- User Rating
- Comments
- Learning Exercises
- Bookmark Collections
- Course ePortfolios
- Accessibility Info