Material Detail

Is there a best quality metric for graph clusters?

Is there a best quality metric for graph clusters?

This video was recorded at European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), Athens 2011. Graph clustering, the process of discovering groups of similar vertices in a graph, is a very interesting area of study, with applications in many different scenarios. One of the most important aspects of graph clustering is the evaluation of cluster quality, which is important not only to measure the effectiveness of clustering algorithms, but also to give insights on the dynamics of relationships in a given network. Many quality evaluation metrics for graph clustering have been proposed in the literature, but there is no consensus on how do they compare to each other and how well they perform on different kinds of graphs. In this work we study five major graph clustering quality metrics in terms of their formal biases and their behavior when applied to clusters found by four implementations of classic graph clustering algorithms on five large, real world graphs. Our results show that those popular quality metrics have strong biases toward incorrectly awarding good scores to some kinds of clusters, especially seen in larger networks. They also indicate that currently used clustering algorithms and quality metrics do not behave as expected when cluster structures are different from the more traditional, clique-like ones.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.