Material Detail

Novel Fusion Methods for Pattern Recognition

Novel Fusion Methods for Pattern Recognition

This video was recorded at European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), Athens 2011. e last few years, several approaches have been proposed for information fusion including different variants of classifier level fusion (ensemble methods), stacking and multiple kernel learning (MKL). MKL has become a preferred choice for information fusion in object recognition. However, in the case of highly discriminative and complementary feature channels, it does not significantly improve upon its trivial baseline which averages the kernels. Alternative ways are stacking and classifier level fusion (CLF) which rely on a two phase approach. There is a significant amount of work on linear programming formulations of ensemble methods particularly in the case of binary classification. In this paper we propose a multiclass extension of binary v-LPBoost, which learns the contribution of each class in each feature channel. The existing approaches of classifier fusion promote sparse features combinations, due to regularization based on l1-norm, and lead to a selection of a subset of feature channels, which is not good in the case of informative channels. Therefore, we generalize existing classifier fusion formulations to arbitrary lp-norm for binary and multiclass problems which results in more effective use of complementary information. We also extended stacking for both binary and multiclass datasets. We present an extensive evaluation of the fusion methods on four datasets involving kernels that are all informative and achieve state-of-the-art results on all of them.


  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material


Log in to participate in the discussions or sign up if you are not already a MERLOT member.