Material Detail

Learning Monotone Nonlinear Models using the Choquet Integral

Learning Monotone Nonlinear Models using the Choquet Integral

This video was recorded at European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), Athens 2011. The learning of predictive models that guarantee monotonicity in the input variables has received increasing attention in machine learning in recent years. While the incorporation of monotonicity constraints is rather simple for certain types of models, it may become a more intricate problem for others. By trend, the difficulty of ensuring monotonicity increases with the flexibility or, say, nonlinearity of a model. In this paper, we advocate the so-called Choquet integral as a tool for learning monotone nonlinear models. While being widely used as a flexible aggregation operator in different fields, such as multiple criteria decision making, the Choquet integral is much less known in machine learning so far. Apart from combining monotonicity and flexibility in a mathematically sound and elegant manner, the Choquet integral has additional features making it attractive from a machine learning point of view. Notably, it offers measures for quantifying the importance of individual predictor variables and the interaction between groups of variables. As a concrete application of the Choquet integral, we propose a generalization of logistic regression. The basic idea of our approach, referred to as choquistic regression, is to replace the linear function of predictor variables, which is commonly used in logistic regression to model the log odds of the positive class, by the Choquet integral.


  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material


Log in to participate in the discussions or sign up if you are not already a MERLOT member.