Material Detail

Aspects of Semi-Supervised and Active Learning in Conditional Random Fields

Aspects of Semi-Supervised and Active Learning in Conditional Random Fields

This video was recorded at European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), Athens 2011. Conditional random fields are among the state-of-the art approaches to structured output prediction, and the model has been adopted for various real-world problems. The supervised classification is expensive, since it is usually expensive to produce labelled data. Unlabeled data are relatively cheap, but how to use it? Unlabeled data can be used to estimate marginal probability of observations, and we exploit this idea in our work. Introduction of unlabeled data and of probability of observations into a purely discriminative model is a challenging task. We consider an extrapolation of a recently proposed semi-supervised criterion to the model of conditional random fields, and show its drawbacks. We discuss alternative usage of the marginal probability and propose a pool-based active learning approach based on quota sampling. We carry out experiments on synthetic as well as on standard natural language data sets, and we show that the proposed quota sampling active learning method is efficient.


  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material


Log in to participate in the discussions or sign up if you are not already a MERLOT member.