Material Detail

HiBISCuS: Hypergraph-Based Source Selection for SPARQL Endpoint Federation

HiBISCuS: Hypergraph-Based Source Selection for SPARQL Endpoint Federation

This video was recorded at 11th Extended Semantic Web Conference (ESWC), Crete 2014. Efficient federated query processing is of significant importance to tame the large amount of data available on the Web of Data. Previous works have focused on generating optimized query execution plans for fast result retrieval. However, devising source selection approaches beyond triple pattern-wise source selection has not received much attention. This work presents HiBISCuS, a novel hypergraph-based source selection approach to federated SPARQL querying. Our approach can be directly combined with existing SPARQL query federation engines to achieve the same recall while querying fewer data sources. We extend three well-known SPARQL query federation engines with HiBISCus and compare our extensions with the original approaches on FedBench. Our evaluation shows that HiBISCuS can efficiently reduce the total number of sources selected without losing recall. Moreover, our approach significantly reduces the execution time of the selected engines on most of the benchmark queries

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.