Material Detail

Machine learning and kernel methods for computer vision

Machine learning and kernel methods for computer vision

This video was recorded at Emerging Trends in Visual Computing. Kernel methods are a new theoretical and algorithmic framework for machine learning. By representing data through well defined dot-products, referred to as kernels, they allow to use classical linear supervised machine learning algorithms to non linear settings and to non vectorial data. A major issue when applying these methods to image processing or computer vision is the choice of the kernel. I will present recent advances in the design of kernels for images that take into account the natural structure of images.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.