Material Detail

Classifying single trial fMRI: What can machine learning learn?

Classifying single trial fMRI: What can machine learning learn?

This video was recorded at NIPS Workshop on New Directions on Decoding Mental States from fMRI Data, Whistler 2006. We describe three experiments combining neuroimaging and machine learning. The first experiment compares the performance of maximum likelihood and neural net classifiers for "brain reading" of fMRI data in the visual cortex. The second experiment applies the optimal classifier to measure the development of the face region in children and adolescents. While the previous experiments used block designs, the third experiment describes an event-related experiment where the classification algorithm learned something real, but not what was planned. The corroboration and validation of the classification results with brain images will be demonstrated.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.