Material Detail

Sparse Log Gaussian Processes via MCMC for Spatial Epidemiology

Sparse Log Gaussian Processes via MCMC for Spatial Epidemiology

This video was recorded at Gaussian Processes in Practice Workshop, Bletchley Park 2006. Log Gaussian processes (LGP) are an attractive manner to construct intensity surfaces for the purposes of spatial epidemiology. The intensity surfaces are naturally smoothed by placing a GP prior over the relative log Poisson rate. In this work a fully independent training conditional (FITC) sparse approximation is used to speed up GP computations. The sampling of the latent values is sped up with transformations taking into account the approximate conditional posterior precision.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.