Material Detail

Sample-Based Planning for Continuous Action Markov Decision Processes

Sample-Based Planning for Continuous Action Markov Decision Processes

This video was recorded at 21st International Conference on Automated Planning and Scheduling. In this paper, we present a new algorithm that integrates recent advances in solving continuous bandit problems with sample-based rollout methods for planning in Markov Decision Processes (MDPs). Our algorithm, Hierarchical Optimistic Optimization applied to Trees (HOOT) addresses planning in continuous-action MDPs. Empirical results are given that show that the performance of our algorithm meets or exceeds that of a similar discrete action planner by eliminating the problem of manual discretization of the action space.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.