Material Detail

A Dual Coordinate Descent Method for Large-scale Linear SVM

A Dual Coordinate Descent Method for Large-scale Linear SVM

This video was recorded at 25th International Conference on Machine Learning (ICML), Helsinki 2008. In many applications, data appear with a huge number of instances as well as features. Linear Support Vector Machines (SVM) is one of the most popular tools to deal with such large-scale sparse data. This paper presents a novel dual coordinate descent method for linear SVM with L1- and L2-loss functions. The proposed method is simple and reaches an epsilon-accurate solution in O(log (1/epsilon)) iterations. Experiments indicate that our method is much faster than state of the art solvers such as Pegasos, Tron, svmperf, and a recent primal coordinate descent implementation.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.