Material Detail

Localized Multiple Kernel Learning

Localized Multiple Kernel Learning

This video was recorded at 25th International Conference on Machine Learning (ICML), Helsinki 2008. Recently, instead of selecting a single kernel, multiple kernel learning (MKL) has been proposed which uses a convex combination of kernels, where the weight of each kernel is optimized during training. However, MKL assigns the same weight to a kernel over the whole input space. In this paper, we develop a localized multiple kernel learning (LMKL) algorithm using a gating model for selecting the appropriate kernel function locally. The localizing gating model and the kernel-based classifier are coupled and their optimization is done in a joint manner. Empirical results on ten benchmark and two bioinformatics data sets validate the applicability of our approach. LMKL achieves statistically similar accuracy results compared with MKL by storing fewer support vectors. LMKL can also combine multiple copies of the same kernel function localized in different parts. For example, LMKL with multiple linear kernels gives better accuracy results than using a single linear kernel on bioinformatics data sets.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.