Material Detail

A Rate-Distortion One-Class Model and its Applications to Clustering

A Rate-Distortion One-Class Model and its Applications to Clustering

This video was recorded at 25th International Conference on Machine Learning (ICML), Helsinki 2008. We study the problem of one-class classification, in which we seek a rule to separate a coherent subset of instances similar to a few positive examples from a large pool of instances. We find that the problem can be formulated naturally in terms of a rate-distortion tradeoff, which can be analyzed precisely and leads to an efficient algorithm that competes well with two previous one-class methods. We also show that our model can be extended naturally to clustering problems in which it is important to remove background clutter to improve cluster purity.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.