Material Detail
Decision Tree and Instance-Based Learning for Label Ranking
This video was recorded at 26th International Conference on Machine Learning (ICML), Montreal 2009. The label ranking problem consists of learning a model that maps instances to total orders over a finite set of predefined labels. This paper introduces new methods for label ranking that complement and improve upon existing approaches. More specifically, we propose extensions of two methods that have been used extensively for classification and regression so far, namely instance-based learning and decision tree induction. The unifying element of the two methods is a procedure for locally estimating predictive probability models for label rankings.
Quality
- User Rating
- Comments
- Learning Exercises
- Bookmark Collections
- Course ePortfolios
- Accessibility Info