Material Detail

Learning with Structured Sparsity

Learning with Structured Sparsity

This video was recorded at 26th International Conference on Machine Learning (ICML), Montreal 2009. This paper investigates a new learning formulation called structured sparsity, which is a natural extension of the standard sparsity concept in statistical learning and compressive sensing. By allowing arbitrary structures on the feature set,this concept generalizes the group sparsity idea. A general theory is developed for learning with structured sparsity, based on the notion of coding complexity associated with the structure. Moreover, a structured greedy algorithm is proposed to efficiently solve the structured sparsity problem. Experiments demonstrate the advantage of structured sparsity over standard sparsity.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.