Material Detail

Independent Factor Topic Models

Independent Factor Topic Models

This video was recorded at 26th International Conference on Machine Learning (ICML), Montreal 2009. Topic models such as Latent Dirichlet Allocation (LDA) and Correlated Topic Model (CTM) have recently emerged as powerful statistical tools for text document modeling. In this paper, we improve upon CTM and propose Independent Factor Topic Models (IFTM) which use linear latent variable models to uncover the hidden sources of correlation between topics. There are 2 main contributions of this work. First, by using a sparse source prior model, we can directly visualize sparse patterns of topic correlations. Secondly, the conditional independence assumption implied in the use of latent source variables allows the objective function to factorize, leading to a fast Newton- Ralphson based variational inference algorithm. Experimental results on synthetic and real data show that IFTM runs on average 3-5 times faster than CTM, while giving competitive performance as measured by perplexity and log-likelihood of held-out data.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.